Phase Transitions in Transfer Learning for High-Dimensional Perceptrons
نویسندگان
چکیده
منابع مشابه
Phase Transitions for High Dimensional Clustering and Related Problems
Consider a two-class clustering problem where we observe Xi = `iμ + Zi, Zi iid ∼ N(0, Ip), 1 ≤ i ≤ n. The feature vector μ ∈ R is unknown but is presumably sparse. The class labels `i ∈ {−1, 1} are also unknown and the main interest is to estimate them. We are interested in the statistical limits. In the two-dimensional phase space calibrating the rarity and strengths of useful features, we fin...
متن کاملPhase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation
We study a spectral initialization method that serves as a key ingredient in recent work on using efficient iterative algorithms for estimating signals in nonconvex settings. Unlike previous analysis in the literature, which is restricted to the phase retrieval setting and which provides only performance bounds, we consider arbitrary generalized linear sensing models and present a precise asymp...
متن کاملPhase Transitions in Machine Learning
Phase transitions typically occur in combinatorial computational problems and have important consequences, especially with the current spread of statistical relational learning and of sequence learning methodologies. In Phase Transitions in Machine Learning the authors begin by describing in detail this phenomenon and the extensive experimental investigation that supports its presence. They the...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملPhase Transitions in Two-Dimensional Complex Plasmas
xv Abstract in German xviiin German xvii
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23040400